
6 Event-based Independence and Conditional

Probability

Example 6.1. Roll a dice. . .

Example

3

 Roll a fair dice

 Sneak peek:
Figure 4: Conditional Probability Example: Sneak Peek

Example 6.2 (Slides). Diagnostic Tests.

6.1 Event-based Conditional Probability

Definition 6.3. Conditional Probability : The conditional prob-
ability P (A|B) of event A, given that event B 6= ∅ occurred, is
given by

P (A|B) =
P (A ∩B)

P (B)
. (6)

• Some ways to say23 or express the conditional probability,
P (A|B), are:

◦ the “(conditional) probability of A, given B”

◦ the “(conditional) probability of A, knowing B”

◦ the “(conditional) probability of A happening, knowing
B has already occurred”

◦ the “(conditional) probability ofA, given thatB occurred”

◦ the “(conditional) probability of an event A under the
knowledge that the outcome will be in event B”

23Note also that although the symbol P (A|B) itself is practical, it phrasing in words can be
so unwieldy that in practice, less formal descriptions are used. For example, we refer to “the
probability that a tested-positive person has the disease” instead of saying “the conditional
probability that a randomly chosen person has the disease given that the test for this person
returns positive result.”
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• Defined only when P (B) > 0.

◦ If P (B) = 0, then it is illogical to speak of P (A|B); that
is P (A|B) is not defined.

6.4. Interpretation : It is sometimes useful to interpret P (A)
as our knowledge of the occurrence of event A before the exper-
iment takes place. Conditional probability24 P (A|B) is the up-
dated probability of the event A given that we now know that
B occurred (but we still do not know which particular outcome in
the set B did occur).

Definition 6.5. Sometimes, we refer to P (A) as

• a priori probability, or

• the prior probability of A, or

• the unconditional probability of A.

Example 6.6. Back to Example 6.1. Roll a dice. Let X be the
outcome.

Example

3

 Roll a fair dice

 Sneak peek:
Figure 5: Sneak Peek: A Revisit

24In general, P (A) and P (A|B) are not the same. However, in the next section (Section
6.2), we will consider the situation in which they are the same.
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Example 6.7. In diagnostic tests Example 6.2, we learn whether
we have the disease from test result. Originally, before taking the
test, the probability of having the disease is 0.01%. Being tested
positive from the 99%-accurate test updates the probability of
having the disease to about 1%.

More specifically, let D be the event that the testee has the
disease and TP be the event that the test returns positive result.

• Before taking the test, the probability of having the disease
is P (D) = 0.01%.

• Using 99%-accurate test means

P (TP |D) = 0.99 and P (T cP |Dc) = 0.99.

• Our calculation shows that P (D|TP ) ≈ 0.01.

6.8. “Prelude” to the concept of “independence”:
If the occurrence of B does not give you more information about
A, then

P (A|B) = P (A) (7)

and we say that A and B are independent .

• Meaning: “learning that eventB has occurred does not change
the probability that event A occurs.”

We will soon define “independence” in Section 6.2. Property
(7) can be regarded as a “practical” definition for independence.
However, there are some “technical” issues25 that we need to deal
with when we actually define independence.

25Here, the statement assume P (B) > 0 because it considers P (A|B). The concept of
independence to be defined in Section 6.2 will not rely directly on conditional probability and
therefore it will include the case where P (B) = 0.
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Example 6.9. Consider the following sequences of 1s and 0s which
summarize the data obtained from 15 testees.

D: 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1

TP: 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1

The “D” row indicates whether each of the testees actually has the
disease under investigation. The “TP” row indicates whether each
of the testees is tested positive for the disease.

Numbers “1” and “0” correspond to “True” and “False”, re-
spectively.

Suppose we randomly pick a testee from this pool of 15 per-
sons. Let D be the event that this selected person actually has
the disease. Let TP be the event that this selected person is tested
positive for the disease.

Find the following probabilities.

(a) P (D)

(b) P (Dc)

(c) P (TP )

(d) P (T cP )

(e) P (TP |D)

(f) P (TP |Dc)

(g) P (T cP |D)

(h) P (T cP |Dc)

59



6.10. Similar properties to the three probability axioms:

(a) Nonnegativity: P (A|B) ≥ 0

(b) Unit normalization: P (Ω|B) = 1.

In fact, for any event A such that B ⊂ A, we have P (A|B) =
1.

This implies
P (Ω|B) = P (B|B) = 1.

(c) Countable additivity: For every countable sequence (An)
∞
n=1

of disjoint events,

P

( ∞⋃
n=1

An

∣∣∣∣∣B
)

=
∞∑
n=1

P (An|B).

• In particular, if A1 ⊥ A2,

P (A1 ∪ A2 |B ) = P (A1 |B ) + P (A2 |B )

6.11. More Properties:

• P (A|Ω) = P (A)

• P (Ac|B) = 1− P (A|B)

• P (A ∩B|B) = P (A|B)

• P (A1 ∪ A2|B) = P (A1|B) + P (A2|B)− P (A1 ∩ A2|B).

• P (A ∩B) ≤ P (A|B)
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6.12. When Ω is finite and all outcomes have equal probabilities,

P (A|B) =
P (A ∩B)

P (B)
=
|A ∩B| / |Ω|
|B| / |Ω| =

|A ∩B|
|B| .

This formula can be regarded as the classical version of conditional
probability.

Exercise 6.13. Someone has rolled a fair dice twice. You know
that one of the rolls turned up a face value of six. What is the
probability that the other roll turned up a six as well?
Ans: 1

11 (not 1
6). [21, Example 8.1, p. 244]

6.14. Probability of compound events

(a) P (A ∩B) = P (A)P (B|A) = P (B)P (A|B)

(b) P (A ∩B ∩ C) = P (A ∩B)× P (C|A ∩B)

(c) P (A ∩B ∩ C) = P (A)× P (B|A)× P (C|A ∩B)

When we have many sets intersected in the conditioning part, we
often use “,” instead of “∩”.

Example 6.15. Most people reason as follows to find the proba-
bility of getting two aces when two cards are selected at random
from an ordinary deck of cards:

(a) The probability of getting an ace on the first card is 4/52.

(b) Given that one ace is gone from the deck, the probability of
getting an ace on the second card is 3/51.

(c) The desired probability is therefore

4

52
× 3

51
.

[21, p 243]

Question: What about the unconditional probability P (B)?
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Example 6.16. You know that roughly 5% of all used cars have
been flood-damaged and estimate that 80% of such cars will later
develop serious engine problems, whereas only 10% of used cars
that are not flood-damaged develop the same problems. Of course,
no used car dealer worth his salt would let you know whether your
car has been flood damaged, so you must resort to probability
calculations. What is the probability that your car will later run
into trouble?

6.17. Tree Diagram and Conditional Probability: Conditional
probabilities can be represented on a tree diagram as shown in
Figure 6.

Tree Diagram and Total Probability 

Theorem

1

=

=

=

=

𝑃 𝐴 = 𝑃 𝐴|𝐵 𝑃 𝐵 + 𝑃 𝐴|𝐵𝑐 𝑃 𝐵𝑐

Figure 6: Tree Diagram and Conditional Probabilities
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A more compact representation is shown in Figure 7.

Diagram: Compact Form

1

𝑃 𝐵

𝑃 𝐵𝑐

𝑃 𝐴|𝐵

𝑃 𝐴𝑐|𝐵𝑐
𝐴𝑐

𝐴

𝐵𝑐

𝐵 𝑃 𝐴 = 𝑃 𝐴|𝐵 𝑃 𝐵 + 𝑃 𝐴|𝐵𝑐 𝑃 𝐵𝑐

𝑃 𝐴𝑐 = 𝑃 𝐴𝑐|𝐵 𝑃 𝐵 + 𝑃 𝐴𝑐|𝐵𝑐 𝑃 𝐵𝑐

Figure 7: Compact Diagram for Conditional Probabilities

Example 6.18. A simple digital communication channel called
binary symmetric channel (BSC) is shown in Figure 6.58. This
channel can be described as a channel that introduces random bit
errors with probability p.

1

0

1

0

1

p

1-p

p

1-p

X Y

Communication Channel

Channel Input Channel Output

Figure 8: Binary Symmetric Channel (BSC)

6.19. Total Probability Theorem : If a (finite or infinitely)
countable collection of events {B1, B2, . . .} is a partition of Ω, then

P (A) =
∑
i

P (A|Bi)P (Bi). (8)

This is a formula26 for computing the probability of an event
that can occur in different ways.

• Special case: P (A) = P (A|B)P (B) + P (A|Bc)P (Bc).
This gives exactly the same calculation as what we discussed
in Example 6.16.

26The tree diagram is useful for helping you understand the process. However, when the
number of possible cases is large (many Bi for the partition), drawing the tree diagram may
be too time-consuming and therefore you should also learn how to apply the total probability
theorem directly without the help of the tree diagram.
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Example 6.20. Continue from the “Diagnostic Tests” Example
6.2 and Example 6.7.

P (TP ) = P (TP ∩D) + P (TP ∩Dc)

= P (TP |D)P (D) + P (TP |Dc )P (Dc) .

For conciseness, we define

pd = P (D)

and
pTE = P (TP |Dc) = P (T cP |D).

Then,
P (TP ) = (1− pTE)pD + pTE(1− pD).

6.21. Bayes’ Theorem:

(a) Form 1:

P (B|A) = P (A|B)
P (B)

P (A)
.

(b) Form 2: If a (finite or infinitely) countable collection of events
{B1, B2, . . .} is a partition of Ω, then

P (Bk|A) = P (A|Bk)
P (Bk)

P (A)
=

P (A|Bk)P (Bk)∑
i P (A|Bi)P (Bi)

.

• Extremely useful for making inferences about phenomena that
cannot be observed directly.

• Sometimes, these inferences are described as “reasoning about
causes when we observe effects”.
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6.22. Summary:

(a) An easy but crucial property:

(b) Key setup: find a partition of the sample space

(c) Total probability theorem:

(d) Bayes’ theorem:

• Special case: When there are only two cases: B1 and B2,
we can think of them as B and Bc, respectively:

◦ P (A) =

◦ P (B|A) =

◦ P (B|Ac) =
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Example 6.23. Suppose Ω = {a, b, c, d, e}. Define four events

A = {a, b, c}, B = {a, b}, C = {c, d}, and D = {e}.

Let

P ({a}) = P ({b}) = 0.2, and P ({c}) = P ({d}) = 0.1.

Calculate the following probabilities:

(a) P ({e})

(b) P (B) , P (C) ,

P (D)

(c) P (A|B)

P (A|C)

P (A|D)

(d) P (A)

Check: Observe that the collection {B,C,D} partitions Ω.
Use the total probability theorem to find P (A).

(e) P (B|A)
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Example 6.24. Continue from the “Disease Testing” Examples
6.2, 6.7, and 6.20:

P (D |TP ) =
P (D ∩ TP )

P (TP )
=
P (TP |D )P (D)

P (TP )

=
(1− pTE)pD

(1− pTE)pD + pTE(1− pD)Effect of pTE

1

pTE = 1 – 0.99 = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.7

0.8

0.9

1

pTE = 1 – 0.9 = 0.1

pTE = 1 – 0.5 = 0.5

pD

P(
D
|
T
P
)

Figure 9: Probability P (D |TP ) that a person will have the disease given that
the test result is positive. The conditional probability is evaluated as a func-
tion of PD which tells how common the disease is. Thee values of test error
probability pTE are shown.

Example 6.25. Medical Diagnostic: Because a new medical pro-
cedure has been shown to be effective in the early detection of an
illness, a medical screening of the population is proposed. The
probability that the test correctly identifies someone with the ill-
ness as positive is 0.99, and the probability that the test correctly
identifies someone without the illness as negative is 0.95. The in-
cidence of the illness in the general population is 0.0001. You take
the test, and the result is positive. What is the probability that
you have the illness? [15, Ex. 2-37]

67



Example 6.26. Bayesian networks are used on the Web sites of
high-technology manufacturers to allow customers to quickly di-
agnose problems with products. An oversimplified example is pre-
sented here.

A printer manufacturer obtained the following probabilities from
a database of test results. Printer failures are associated with three
types of problems: hardware, software, and other (such as connec-
tors), with probabilities 0.1, 0.6, and 0.3, respectively. The prob-
ability of a printer failure given a hardware problem is 0.9, given
a software problem is 0.2, and given any other type of problem is
0.5. If a customer enters the manufacturers Web site to diagnose
a printer failure, what is the most likely cause of the problem?

Let the events H, S, and O denote a hardware, software, or
other problem, respectively, and let F denote a printer failure.

P (H|F ) =
P (H ∩ F )

P (F )
=
P (F |H)P (H)

P (F )

P (S|F ) =
P (S ∩ F )

P (F )
=
P (F |S)P (S)

P (F )

P (O|F ) =
P (O ∩ F )

P (F )
=
P (F |O)P (O)

P (F )
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Example 6.27 (Slides). The Murder of Nicole Brown

6.28. Chain rule of conditional probability [9, p 58]:

P (A ∩B|C) = P (B|C)P (A|B ∩ C).

6.29. In practice, here is how we use the total probability theorem
and Bayes’ theorem:

Usually, we work with a system, which of course has input and
output. There can be many possibilities for inputs and there can be
many possibilities for output. Normally, for deterministic system,
we may have a specification that tells what would be the output
given that a specific input is used. Intuitively, we may think of this
as a table of mapping between input and output. For system with
random component(s), when a specific input is used, the output is
not unique. This mean we needs conditional probability to describe
the output (given an input). Of course, this conditional probability
can be different for different inputs.

We will assume that there are many cases that the input can
happen. The event that the ith case happens is denoted by Bi. We
assume that we consider all possible cases. Therefore, the union
of these Bi will automatically be Ω. If we also define the cases so
that they do not overlap, then the Bi partitions Ω.

Similarly, there are many cases that the output can happen.
The event that the jth case happens is depenoted by Aj. We
assume that the Aj also partitions Ω.

In this way, the system itself can be described by the condi-
tional probabilities of the form P (Aj|Bi). This replace the table
mentioned above as the specification of the system. Note that
even when this information is not available, we can still obtain an
approximation of the conditional probability by repeating trials of
inputting Bi in to the system to find the relative frequency of the
output Aj.

Now, when the system is used in actual situation. Different
input cases can happen with different probabilities. These are
described by the prior probabilities P (Bi). Combining this with
the conditional probabilities P (Aj|Bi) above, we can use the total
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probability theorem to find the probability of occurrence for out-
put and, even more importantly, for someone who cannot directly
observe the input, Bayes’ theorem can be used to infer the value
(or the probability) of the input from the observed output of the
system.

In particular, total probability theorem deals with the calcula-
tion of the output probabilities P (Aj):

P (Aj) =
∑
i

P (Aj ∩Bi) =
∑
i

P (Aj |Bi )P (Bi).

Bayes’ theorem calculates the probability that Bk was the input
event when the observer can only observe the output of the system
and the observed value of the output is Aj:

P (Bk |Aj ) =
P (Aj ∩Bk)

P (Aj)
=

P (Aj |Bk )P (Bk)∑
i

P (Aj |Bi )P (Bi)
.

Example 6.30. In the early 1990s, a leading Swedish tabloid
tried to create an uproar with the headline “Your ticket is thrown
away!”. This was in reference to the popular Swedish TV show
“Bingolotto” where people bought lottery tickets and mailed them
to the show. The host then, in live broadcast, drew one ticket from
a large mailbag and announced a winner. Some observant reporter
noticed that the bag contained only a small fraction of the hun-
dreds of thousands tickets that were mailed. Thus the conclusion:
Your ticket has most likely been thrown away!

Let us solve this quickly. Just to have some numbers, let us
say that there are a total of N = 100, 000 tickets and that n =
1, 000 of them are chosen at random to be in the final drawing.
If the drawing was from all tickets, your chance to win would
be 1/N = 1/100, 000. The way it is actually done, you need to
both survive the first drawing to get your ticket into the bag and
then get your ticket drawn from the bag. The probability to get
your entry into the bag is n/N = 1, 000/100, 000. The conditional
probability to be drawn from the bag, given that your entry is in
it, is 1/n = 1/1, 000. Multiply to get 1/N = 1/100, 000 once more.
There were no riots in the streets. [17, p 22]
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Example 6.31. Suppose your professor tells the class that there
will be a surprise quiz next week. On one day, Monday-Friday,
you will be told in the morning that a quiz is to be given on that
day. You quickly realize that the quiz will not be given on Fri-
day; if it was, it would not be a surprise because it is the last
possible day to get the quiz. Thus, Friday is ruled out, which
leaves Monday-Thursday. But then Thursday is impossible also,
now having become the last possible day to get the quiz. Thurs-
day is ruled out, but then Wednesday becomes impossible, then
Tuesday, then Monday, and you conclude: There is no such thing
as a surprise quiz! But the professor decides to give the quiz on
Tuesday, and come Tuesday morning, you are surprised indeed.

This problem, which is often also formulated in terms of sur-
prise fire drills or surprise executions, is known by many names, for
example, the “hangman’s paradox” or by serious philosophers as
the “prediction paradox.” To resolve it, let’s treat it as a probabil-
ity problem. Suppose that the day of the quiz is chosen randomly
among the five days of the week. Now start a new school week.
What is the probability that you get the test on Monday? Obvi-
ously 1/5 because this is the probability that Monday is chosen.
If the test was not given on Monday. what is the probability that
it is given on Tuesday? The probability that Tuesday is chosen
to start with is 1/5, but we are now asking for the conditional
probability that the test is given on Tuesday, given that it was not
given on Monday. As there are now four days left, this conditional
probability is 1/4. Similarly, the conditional probabilities that the
test is given on Wednesday, Thursday, and Friday conditioned on
that it has not been given thus far are 1/3, 1/2, and 1, respectively.

We could define the “surprise index” each day as the probability
that the test is not given. On Monday, the surprise index is there-
fore 0.8, on Tuesday it has gone down to 0.75, and it continues to
go down as the week proceeds with no test given. On Friday, the
surprise index is 0, indicating absolute certainty that the test will
be given that day. Thus, it is possible to give a surprise test but
not in a way so that you are equally surprised each day, and it is
never possible to give it so that you are surprised on Friday. [17,
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p 23–24]

Example 6.32. Today Bayesian analysis is widely employed through-
out science and industry. For instance, models employed to deter-
mine car insurance rates include a mathematical function describ-
ing, per unit of driving time, your personal probability of having
zero, one, or more accidents. Consider, for our purposes, a sim-
plified model that places everyone in one of two categories: high
risk, which includes drivers who average at least one accident each
year, and low risk, which includes drivers who average less than
one.

If, when you apply for insurance, you have a driving record
that stretches back twenty years without an accident or one that
goes back twenty years with thirty-seven accidents, the insurance
company can be pretty sure which category to place you in. But if
you are a new driver, should you be classified as low risk (a kid who
obeys the speed limit and volunteers to be the designated driver)
or high risk (a kid who races down Main Street swigging from a
half-empty $2 bottle of Boone’s Farm apple wine)?

Since the company has no data on you, it might assign you
an equal prior probability of being in either group, or it might
use what it knows about the general population of new drivers
and start you off by guessing that the chances you are a high risk
are, say, 1 in 3. In that case the company would model you as a
hybrid–one-third high risk and two-thirds low risk–and charge you
one-third the price it charges high-risk drivers plus two-thirds the
price it charges low-risk drivers.

Then, after a year of observation, the company can employ the
new datum to reevaluate its model, adjust the one-third and two-
third proportions it previously assigned, and recalculate what it
ought to charge. If you have had no accidents, the proportion of
low risk and low price it assigns you will increase; if you have had
two accidents, it will decrease. The precise size of the adjustment
is given by Bayes’s theory. In the same manner the insurance
company can periodically adjust its assessments in later years to
reflect the fact that you were accident-free or that you twice had
an accident while driving the wrong way down a one-way street,
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holding a cell phone with your left hand and a doughnut with
your right. That is why insurance companies can give out “good
driver” discounts: the absence of accidents elevates the posterior
probability that a driver belongs in a low-risk group. [14, p 111-
112]
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